Myricetin Inhibits Islet Amyloid Polypeptide (IAPP) Aggregation and Rescues Living Mammalian Cells from IAPP Toxicity

نویسندگان

  • Casey Zelus
  • Ayano Fox
  • Anastasia Calciano
  • Bianca S Faridian
  • Luiza A Nogaj
  • David A Moffet
چکیده

The aggregation of the amyloidogenic polypeptide IAPP (Islet Amyloid Polypeptide, amylin) is believed to play a direct role in the death of pancreatic β-islet cells in type II diabetes. Preventing the initial aggregation event of IAPP is one strategy for slowing, and possibly preventing, the progression of this disease. Here, we investigate myricetin's potential as an inhibitor of IAPP aggregation. We show that myricetin prevented thioflavin T binding in a concentration dependent manner. Atomic force microscopy revealed that myricetin prevented fiber formation under rigorous conditions conducive to forming IAPP aggregates. Using an IAPP-EGFP (Enhanced Green Fluorescent Protein) protein construct, we find that high concentrations of myricetin slowed the in vivo aggregation of IAPP-EGFP. Myricetin was also found to rescue living mammalian cells from the toxic effects of IAPP. These results indicate that myricetin is a strong inhibitor of IAPP amyloid aggregation and a potential lead molecule for the development of an amyloid inhibiting therapeutic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes

Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...

متن کامل

BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells

Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been sh...

متن کامل

β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor

In type 2 diabetes, the formation of islet amyloid consisting of islet amyloid polypeptide (IAPP) is associated with reduction in β-cell mass and contributes to the failure of islet cell transplantation. Rational design of inhibitors of IAPP amyloid formation has therapeutic potential, but is hampered by the lack of structural information on inhibitor complexes of the conformationally flexible,...

متن کامل

Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.

Islet amyloid polypeptide (IAPP, or amylin) is one of the major secretory products of β-cells of the pancreatic islets of Langerhans. It is a regulatory peptide with putative function both locally in the islets, where it inhibits insulin and glucagon secretion, and at distant targets. It has binding sites in the brain, possibly contributing also to satiety regulation and inhibits gastric emptyi...

متن کامل

Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism.

In type-2 diabetes (T2D), islet amyloid polypeptide (IAPP) self-associates into toxic assemblies causing islet β-cell death. Therefore, preventing IAPP toxicity is a promising therapeutic strategy for T2D. The molecular tweezer CLR01 is a supramolecular tool for selective complexation of K residues in (poly)peptides. Surprisingly, it inhibits IAPP aggregation at substoichiometric concentrations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012